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Abstract (a) code-book-based image compression
templates in database

A word-parallel digital associative engine with accurate and wide- J 'n'?Ut
range Manhattan-distance computation is presented. It performs
continuous search operation to detect not only the nearest-match da
but also all data in the sorted order of the exact Manhattan distanc
The word-parallel digital implementation using a hierarchical search (gétgts(igll)gs\) Which oneis more similar?
path provides a high-speed search operation with faultless precision, o g templates in database
a low-voltage operation mode, and a potential capability of unlim- (b) vector-quantization recognition

ited data capacity. Word-parallel distance calculation circuits au- p

. . . represented

tonomously count the Manhattan distance using a weighted searc vector pattern l li &

clock to detect the nearest-match data. An associative engine, with —\, input

64 words of 8 bitx 32 element, has been fabricated using a @18 i iLl h iI 8-bit depth

CMOS process and successfully tested. The worst-case search time Lﬂ_zu—. (256 scales) 9

all data sorting takes 5.85 at a supply voltage of 1.8 V. 32-element °
Fig. 1 Application examples of Manhattan-distance search.

Introduction
learning and high-speed data sorting in addition to the conven-

Associative processors based on content addressable MeMAkSs. | use. An associative engine, with 64 words of &b&2

(CAMs) have ?"?e“ proposed for va}rious applica}tions such Bfement, has been fabricated in a 0.8 CMOS process and
pattern recognition, data compression and intelligent process; p

! ) iccessfully tested.
ing to reduce the considerable memory access and processing
time [1]-{6]. Some fully-parallel processors [1]-[4] employ  \yord-Parallel Manhattan Distance Computation
Hamming distance for associative processing sineamming T _
distance estimation is realized by less computation@bet than A Element Circuit Structure and Computation Flow
Manhattan distance. On the other hand, associative processAssociative processing based on Manhattan distance generally
ing based orManhattan distance is capable of many prac- handles-bit x j-element data as shown in Fig.1. Manhattan
tical applications such as vector-quantization recognition [5flistance compuation requires SAD (summation of absolute dif-
code-book-based image compression [6] and so on as shol@rence) between an input and all stored data. Fig.2 (a) shows
in Fig.1. Although associative processors basetHamming an 8-bit element structure. The stored data are divided into
distance are capable oManhattan distance estimation using blocks and hierarchically connected by a bypass line to reduce
thermometer encoding as reported in [2], they requirgi2 the search signal propagation path as shown in Fig.2 (b). The
length fori-bit data elements. Therefore, associative proces8-bit element consists of 8 SRAM cells, a bit selector, a sub-
ing with a compact bit length requires the natural binary codingjactor based on a half adder (HA) with an absolute function
for Manhattan distance such as [6]-[9]. (ABS), a flag register (FR) with a bit comparison function, and
In this paper, we present a word-parallel associative ed-chained search circuit as shown in Fig.3.
gine with accurate and wide-range Manhattan-distance com-The present algorithm and circuit implementation for Man-
putation. The word-parallel digital implementation using a hihattan distance computation are shown in Fig.4 through Fig.7.
erarchical search path enables a high-speed search operafigit, absolute flags are generated in element parallel. Then,
with faultless precision, a low-voltage operation mode, and distance counting operation is executed by a chained search
a potential capability of unlimited data capacity. These feasignal propagation in word parallel. Itis processed by weighted
tures are important for a system-on-a-chip application in fusearch clocks which are autonomously provided by word-
ture process technologies, which ishdiult to attain using the parallel distance calculation circuits. Finally, the nearest-match
conventional mixed-signal approaches [7]-[9]. Furthermore, #ata is detected iGandidates which are activated by the word-
performs a continuous search operation to detect not only tp@rallel calculation circuits at the same time. All the data can
nearest-match data but also all data in the sorted order of the detected by a continuous search operation in the sorted order
exact Manhattan distance. It requires considerable search opgrManhattan distance.
ations in case of the conventional architectures [6]—[9]. Word- Absolute Flag G .
parallel distance calculation circuits autonomously count the: APsolute Flag Generation
Manhattan distance using a weighted search clock to detect th@.4 (a) shows the element-parallel absolute flag generation.
nearest-match data. The unique associative processing whttist, an input data; is compared with a stored dai from
accurate and wide-range Manhattan-distance computation 8SB to LSB in element parallel. It determine&j > B;;’ or
ficiently realizes various new applications such as human-likéyj < B;;’ using an inputA;j and a sum resuls;; of HA. The
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Fig. 3 Circuit configuration of an 8-bit element cell.
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Fig. 5 Word-parallel distance calculation circuits using autonomous
weighted search clocks.

C. Distance Counting Operation

The distance counting operation is executed from LSBs fg- V\eighted Search Clock Technique

MSBs of elements in word parallel as shown in Fig.4 (b). Arig.5 shows a word-parallel distance calculation circuit using
sum resultSy; of Agj andBy; is set toM ¢ as a control signal autonomous weighted search clocks. The word-parallel circuit
of a chained search circuit. A search signal detects the firseceives the search output sig&aluty, and it counts the Man-
encountered mismatch bit withl, = 1 in each block. The hattan distance based on a weight of a search ajsch. A
search clock period is limited by the search signal propagaearch clock has fierent weights according to the bit number
tion path via chained search circuits. Therefore, a hierarchicathat is currently evaluated in elements. For example, it has a
search path based on [3] is implemented as shown in Fig.2 (Weight of 2- and 2*1-bit Manhattan distance during a count-
A bypass search sign&, is also used for a mask permissioning operation fori-th sum and carry outputs, respectively. A
signal to the next block, which makes only one mismatch biword-parallel circuit autonomously provideschy to count all
maskable in each word for the next clock period. The intethe mismatch bits faster. Therefore, it has a local weilght
rupted search signal starts again from the masked bit, and dis a current weight afschy, and accumulates a global weight
nally a search signal can be detecte®asty when all the mis- Wy on a residual weigh#Vry as shown in Fig.4 (c). A search
match bits have been masked. Therefore, the operation cloaieck ¢schi is provided and the local weightly is subtracted
represent the number of mismatch bits. After that, a distané®m Wr, when the sum total ofVr, and Wy exceedswiy.
counting operation is executed again for a carry reSgjlin a  The local weightVl, always precedes the global weightyy in
similar manner to the counting operation for a sum reSyjt  every word since the global weighity is commonly updated
These counting operations are repeated fApto Az;. according to the worst case. Some fractional weights caused
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by the precedence are stored as a residual w&ght In the
present counting technique, the number of processing elements
per word is determined by just the bit lendthper element as Fig. 9 Chip microphotograph and layout of an element cell.
shown in Fig.5. A word-parallel circuit also controls bit select

signalsSelj, according toWly, and finally providesAct to @  the nearest data iGandidates, and then the detected nearest
priority address encoder aszandidate. data is masked to continue a search operation for the next near-
est data. The circuit configuration is shown in Fig.7.

E. Nearest-Match Detection in Candidates

The distance counting operation is interrupted at the detection ) i
timing of Act,, and then the process moves to nearest-match Chip Implementation
detection forCandidates as shown in Fig.6Candidates are all

. ) ; We have designed and fabricated an associative engine usin
the words activated b#xcty at the same time. They haveftair- g g g

. ; . X . the present search architecture in a 1P5M @ih8CMOS pro-
ent residual weight according to their Manhattan distance frosd  Fig g jliustrates a block diagram of the search engine. It
the input since the distance is given BWg — Wr. XWg IS cqngists of a search memory array with 64 words of 882

the total distance weight operated before the detection timlréq PSR : ;
: . ement, a memory reagrite circuit with data shift registers,
of Act. Note thalCandidatesare closer to the input than all the 5 \yorq decoder, word-parallel distance calculation circuits, a

other undetected words in the present search algorithm, henge, i+ aqdress encoder for nearest-match detection in candi-
they include the nearest match data. This feature contribut§sias” and a CAM controller. These components are imple-
to detect the nearest-match data, and also enables a continuQlS e in a die size of 2.8 2.8 mn. Fig.9 shows a chip mi-

rs]earch dqperation;r(])r data sorting irr: é)rder of t_he_(;exact_ MaRtophotograph and an 8-bit element cell layout. A 32-element
attan distance. The nearest-match detectidDandidates is word is divided into four blocks to reduce the critical path.

carried out by a nearest-match detector and a priority addres

encoder. It evaluates each residual Weig"k from MSB to 1The chip in this study has been fabricated through VLSI Design and Edu-

L_SB as shown in Fig-G- The proces_s mainta;ins ConSiStenEé(tion Center(VDEC), University of Tokyo in collaboration with Hitachi Ltd.
with each other word. It keeps all residual weights other thaind Dai Nippon Printing Co.




250 TABLE | Core area and SRAM ratio.
’g 20.0 Data size Core area | SRAM ratio
= 8-bit 32-ele. 64-word (16K) 2.37 mn? 17.2%
ke] 8-bit 64-ele. 128-word (64K) 6.70 mnt 21.9%
g 150 8-bit 128-ele. 256-word (256K) 22.25 mnd 25.3%
X 8-bit 256-ele. 512-word (1M) | 81.04 mn3 27.5%
© 10.0p 294.1 MHz 1
; @1.8 \% TABLE Il Specifications of the associative coprocessor.
% 5.0 FAIL ! Process 1P5M 0.18m CMOS process
3 Chip size 2.8 mnx 2.8 mm
0 . . . . . . . Power voltage supply 0.8v-18V
06 08 10 12 14 16 18 20 Database capacity 8-bit 32-element 64-word templates
Power supply voltage (V) Distance measure Manhattan distance
Fig. 10 Power supply voltage vs search clock period. Functions ~ Nearest detectipdll data sorting
Nearest detectiontime 1.5~ 2.00us
- 300 v v v v All data sorting time 5.8s
3 (b) the conventional digital Operation Speed 294.1 MHz @ 1.8V
o 25.0f 1 724MHz @ 0.9V
é 200l /7 1 Power dissipation 320.7mW @ 1.8V, 294.1 MHz
o (¢) the conventional analog .....- ‘ 15.1mW @ 0.9V, 72.4 MHz
© (assuming feasible to 28x 32 distance)
S 15.0f 1
o .
v 10,0} | Conclusions
8 We have proposed a new word-parallel digital architecture and
*é 5.01 e ] circuit implementation for accurate and wide-range Manhattan
S b - (@)the present coprocessor distance computation employing a hierarchical search path and
Foef R oF o aweighted search clock technique. Itis capable of the detection
& & &g we g of all data in the sorted order of the exact Manhattan distance in
Search range (up to i-th nearest data) addition to the nearest-match data. The weighted search clock
Fig. 11 Characteristics of the present continuous search operation {§fhnique performs the wide-range associative processing with
wide-range associative processing. fewer additional cycles. Furthermore, the digital implemen-
tation enables a low-voltage operation for SoC applications in
M easurement Results and Discussions future process technologies. It also makes device scaling easier

and provides the possibility of a large data capacity with unlim-

The measurement results show that the operation speed attaigg search distance. An associative engine, with 64 words of
294.1 MHz and the power dissipation is 320.7 mW at a supplg bit x 32 element, has successfully performed the Manhattan
voltage of 1.8 V. The total search time for nearest-match detegistance computation. The worst-case search time of all data
tion is 2.00us in the worst case. Fig.10 shows the operatioBorting takes 5.8&s at a supply voltage of 1.8 V.
speed as a function of the supply voltage from 0.8 V to 2.0 V.
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