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Abstract

A word-parallel digital associative engine with accurate and wide-
range Manhattan-distance computation is presented. It performs a
continuous search operation to detect not only the nearest-match data
but also all data in the sorted order of the exact Manhattan distance.
The word-parallel digital implementation using a hierarchical search
path provides a high-speed search operation with faultless precision,
a low-voltage operation mode, and a potential capability of unlim-
ited data capacity. Word-parallel distance calculation circuits au-
tonomously count the Manhattan distance using a weighted search
clock to detect the nearest-match data. An associative engine, with
64 words of 8 bit× 32 element, has been fabricated using a 0.18µm
CMOS process and successfully tested. The worst-case search time of
all data sorting takes 5.85µs at a supply voltage of 1.8 V.

Introduction

Associative processors based on content addressable memories
(CAMs) have been proposed for various applications such as
pattern recognition, data compression and intelligent process-
ing to reduce the considerable memory access and processing
time [1]–[6]. Some fully-parallel processors [1]–[4] employ
Hamming distance for associative processing sinceHamming
distance estimation is realized by less computational effort than
Manhattan distance. On the other hand, associative process-
ing based onManhattan distance is capable of many prac-
tical applications such as vector-quantization recognition [5],
code-book-based image compression [6] and so on as shown
in Fig.1. Although associative processors based onHamming
distance are capable ofManhattan distance estimation using
thermometer encoding as reported in [2], they require 2i bit
length for i-bit data elements. Therefore, associative process-
ing with a compact bit length requires the natural binary coding
for Manhattan distance such as [6]–[9].

In this paper, we present a word-parallel associative en-
gine with accurate and wide-range Manhattan-distance com-
putation. The word-parallel digital implementation using a hi-
erarchical search path enables a high-speed search operation
with faultless precision, a low-voltage operation mode, and
a potential capability of unlimited data capacity. These fea-
tures are important for a system-on-a-chip application in fu-
ture process technologies, which is difficult to attain using the
conventional mixed-signal approaches [7]–[9]. Furthermore, it
performs a continuous search operation to detect not only the
nearest-match data but also all data in the sorted order of the
exact Manhattan distance. It requires considerable search oper-
ations in case of the conventional architectures [6]–[9]. Word-
parallel distance calculation circuits autonomously count the
Manhattan distance using a weighted search clock to detect the
nearest-match data. The unique associative processing with
accurate and wide-range Manhattan-distance computation ef-
ficiently realizes various new applications such as human-like
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Fig. 1 Application examples of Manhattan-distance search.

learning and high-speed data sorting in addition to the conven-
tional use. An associative engine, with 64 words of 8 bit× 32
element, has been fabricated in a 0.18µm CMOS process and
successfully tested.

Word-Parallel Manhattan Distance Computation

A. Element Circuit Structure and Computation Flow
Associative processing based on Manhattan distance generally
handlesi-bit × j-element data as shown in Fig.1. Manhattan
distance compuation requires SAD (summation of absolute dif-
ference) between an input and all stored data. Fig.2 (a) shows
an 8-bit element structure. The stored data are divided into
blocks and hierarchically connected by a bypass line to reduce
the search signal propagation path as shown in Fig.2 (b). The
8-bit element consists of 8 SRAM cells, a bit selector, a sub-
tractor based on a half adder (HA) with an absolute function
(ABS), a flag register (FR) with a bit comparison function, and
a chained search circuit as shown in Fig.3.

The present algorithm and circuit implementation for Man-
hattan distance computation are shown in Fig.4 through Fig.7.
First, absolute flags are generated in element parallel. Then,
a distance counting operation is executed by a chained search
signal propagation in word parallel. It is processed by weighted
search clocks which are autonomously provided by word-
parallel distance calculation circuits. Finally, the nearest-match
data is detected inCandidates which are activated by the word-
parallel calculation circuits at the same time. All the data can
be detected by a continuous search operation in the sorted order
of Manhattan distance.

B. Absolute Flag Generation

Fig.4 (a) shows the element-parallel absolute flag generation.
First, an input dataAi j is compared with a stored dataBi j from
MSB to LSB in element parallel. It determines ‘Ai j > Bi j’ or
‘ Ai j < Bi j’ using an inputAi j and a sum resultS i j of HA. The
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Fig. 2 Block diagram: (a) an 8-bit element structure, (b) a word struc-
ture with hierarchical search path.
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comparison resultF jk is stored in a flag resister and used for an
absolute function by switching a carry resultCi j of HA between
Ai j · Bi j andAi j · Bi j. The absolute difference is calculated in
element parallel during the word-parallel summation.

C. Distance Counting Operation

The distance counting operation is executed from LSBs to
MSBs of elements in word parallel as shown in Fig.4 (b). A
sum resultS 0 j of A0 j andB0 j is set toM jk as a control signal
of a chained search circuit. A search signal detects the first-
encountered mismatch bit withM jk = 1 in each block. The
search clock period is limited by the search signal propaga-
tion path via chained search circuits. Therefore, a hierarchical
search path based on [3] is implemented as shown in Fig.2 (b).
A bypass search signalPkb is also used for a mask permission
signal to the next block, which makes only one mismatch bit
maskable in each word for the next clock period. The inter-
rupted search signal starts again from the masked bit, and fi-
nally a search signal can be detected asS outk when all the mis-
match bits have been masked. Therefore, the operation clocks
represent the number of mismatch bits. After that, a distance
counting operation is executed again for a carry resultC0 j in a
similar manner to the counting operation for a sum resultS 0 j.
These counting operations are repeated fromA0 j to A7 j.
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D. Weighted Search Clock Technique

Fig.5 shows a word-parallel distance calculation circuit using
autonomous weighted search clocks. The word-parallel circuit
receives the search output signalS outk, and it counts the Man-
hattan distance based on a weight of a search clockφsch. A
search clock has different weights according to the bit number
i that is currently evaluated in elements. For example, it has a
weight of 2i- and 2i+1-bit Manhattan distance during a count-
ing operation fori-th sum and carry outputs, respectively. A
word-parallel circuit autonomously providesφschk to count all
the mismatch bits faster. Therefore, it has a local weightWlk
as a current weight ofφschk, and accumulates a global weight
Wg on a residual weightWrk as shown in Fig.4 (c). A search
clockφschk is provided and the local weightWlk is subtracted
from Wrk when the sum total ofWrr and Wg exceedsWlk.
The local weightWlk always precedes the global weightWg in
every word since the global weightWg is commonly updated
according to the worst case. Some fractional weights caused
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by the precedence are stored as a residual weightWrk. In the
present counting technique, the number of processing elements
per word is determined by just the bit lengthN per element as
shown in Fig.5. A word-parallel circuit also controls bit select
signalsS elik according toWlk, and finally providesActk to a
priority address encoder as aCandidate.

E. Nearest-Match Detection in Candidates

The distance counting operation is interrupted at the detection
timing of Actk, and then the process moves to nearest-match
detection forCandidates as shown in Fig.6.Candidates are all
the words activated byActk at the same time. They have differ-
ent residual weight according to their Manhattan distance from
the input since the distance is given byΣWg − Wrk. ΣWg is
the total distance weight operated before the detection timing
of Actk. Note thatCandidates are closer to the input than all the
other undetected words in the present search algorithm, hence
they include the nearest match data. This feature contributes
to detect the nearest-match data, and also enables a continuous
search operation for data sorting in order of the exact Man-
hattan distance. The nearest-match detection inCandidates is
carried out by a nearest-match detector and a priority address
encoder. It evaluates each residual weightWrk from MSB to
LSB as shown in Fig.6. The process maintains consistency
with each other word. It keeps all residual weights other than
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Fig. 9 Chip microphotograph and layout of an element cell.

the nearest data inCandidates, and then the detected nearest
data is masked to continue a search operation for the next near-
est data. The circuit configuration is shown in Fig.7.

Chip Implementation

We have designed and fabricated an associative engine using
the present search architecture in a 1P5M 0.18µm CMOS pro-
cess1. Fig.8 illustrates a block diagram of the search engine. It
consists of a search memory array with 64 words of 8 bit× 32
element, a memory read/write circuit with data shift registers,
a word decoder, word-parallel distance calculation circuits, a
priority address encoder for nearest-match detection in candi-
dates, and a CAM controller. These components are imple-
mented in a die size of 2.8× 2.8 mm2. Fig.9 shows a chip mi-
crophotograph and an 8-bit element cell layout. A 32-element
word is divided into four blocks to reduce the critical path.

1The chip in this study has been fabricated through VLSI Design and Edu-
cation Center(VDEC), University of Tokyo in collaboration with Hitachi Ltd.
and Dai Nippon Printing Co.
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Measurement Results and Discussions

The measurement results show that the operation speed attains
294.1 MHz and the power dissipation is 320.7 mW at a supply
voltage of 1.8 V. The total search time for nearest-match detec-
tion is 2.00µs in the worst case. Fig.10 shows the operation
speed as a function of the supply voltage from 0.8 V to 2.0 V.
The fully digital implementation enables a low-voltage opera-
tion mode up to 0.8 V. It attains an operation frequency of 72.4
MHz and a power dissipation of 15.1 mW at 0.9 V. The as-
sociative processing ensures Manhattan distance computation
with faultless precision.

Fig.11 shows the worst-case search time for wide-range
Manhattan distance computation. The present search engine
is capable of a continuous search operation to detect all data
in the sorted order of the exact Manhattan distance in addition
to the nearest-match data. It efficiently realizes a wide-range
search operation as shown by (a) in Fig.11. On the other hand,
the conventional architectures require considerable search op-
erations. Fig.11 (b) is estimated based on [6] as a conventional
digital technique. Fig.11 (c) is estimated based on [9] as a con-
ventional mixed-signal technique assuming that it is scalable
to the same capacity as the present coprocessor since there was
no report on such a long distance search by mixed-signal tech-
niques so far. A capacity scalability is also one of advantages
of the present digital implementation.

Table I shows the core area and SRAM ratio of various data
capacities. The integration ratio of SRAMs is almost equiva-
lent to the ratio of 19 % of the conventional digital processor
[6]. Furthermore, the present architecture has the possibility of
a large database capacity in a practical die size since it makes
device scaling easier than the conventional mixed-signal tech-
niques. Table II summarizes the chip specifications.

TABLE I Core area and SRAM ratio.
Data size Core area SRAM ratio

8-bit 32-ele. 64-word (16K) 2.37 mm2 17.2 %
8-bit 64-ele. 128-word (64K) 6.70 mm2 21.9 %
8-bit 128-ele. 256-word (256K) 22.25 mm2 25.3 %
8-bit 256-ele. 512-word (1M) 81.04 mm2 27.5 %

TABLE II Specifications of the associative coprocessor.

Process 1P5M 0.18µm CMOS process
Chip size 2.8 mm× 2.8 mm
Power voltage supply 0.8 V – 1.8 V
Database capacity 8-bit 32-element 64-word templates
Distance measure Manhattan distance
Functions Nearest detection/ All data sorting
Nearest detection time 1.65µs∼ 2.00µs
All data sorting time 5.85µs
Operation speed 294.1 MHz @ 1.8 V

72.4 MHz @ 0.9 V
Power dissipation 320.7 mW @ 1.8 V, 294.1 MHz

15.1 mW @ 0.9 V, 72.4 MHz

Conclusions

We have proposed a new word-parallel digital architecture and
circuit implementation for accurate and wide-range Manhattan
distance computation employing a hierarchical search path and
a weighted search clock technique. It is capable of the detection
of all data in the sorted order of the exact Manhattan distance in
addition to the nearest-match data. The weighted search clock
technique performs the wide-range associative processing with
fewer additional cycles. Furthermore, the digital implemen-
tation enables a low-voltage operation for SoC applications in
future process technologies. It also makes device scaling easier
and provides the possibility of a large data capacity with unlim-
ited search distance. An associative engine, with 64 words of
8 bit × 32 element, has successfully performed the Manhattan
distance computation. The worst-case search time of all data
sorting takes 5.85µs at a supply voltage of 1.8 V.
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