Autonomous di/dt Noise Control Scheme for Margin Aware Operation

<u>Toru Nakura[#], Makoto Ikeda*, Kunihiro Asada*</u>

#Dept. of Electronic Engineering, *VLSI Design and Education Center, University of Tokyo, Tokyo, Japan

Background

- di/dt is becoming a critical issue
 - L(di/dt) noise of low voltage LSIs
 - Substrate noise on Mixed-signal LSIs
 - EMI noise of high-speed operation LSIs
- Control the operation mode based on di/dt

Contents

- Autonomous di/dt Control Scheme
- Circuit Design
- Measurement Result
- Summary

Autonomous di/dt Control

di/dt-based operation mode control

Advantages

- Measurement base
 - PVT variation is taken into account
 - Difficult to predict the di/dt by a simulation
- Get "best effort" performance under the restricted di/dt
- The di/dt range is controllable by Vref

Mode Controllable Int. Circuit

• "all" (high-performance), "half" (low-noise) mode

di/dt Detector

di/dt Multiplier, Low Pass Filter

Operation Mode Controller

 Mode control is realized by two comparators and combination of gates

Operation Mode Control

When di/dt is too high

--> change to "half" (low-noise) mode

When di/dt is too low

--> change to "all" (high-performance) mode

Chip Photograph

0.15um 5ML SOI-CMOS

Measurement Setup

Frequency vs di/dt Noise Power

Proof of Operation -- Oscillation

- Oscillation occurs between two modes
 - Frequency depends on $\Delta Vref$
 - H/L ratio depends on Vref_av

Oscillation Waveforms (1)

Oscillation Waveforms (2)

Oscillation Frequency, H/L ratio

(I)		Vref_av [V]	$\Delta Vref[V]$	Out [V]	period [ns]
	(b)	1.270	0.00	0.9	91
	(d)	1.265	0.01	0.9	148
	(a)	1.275	0.01	1.0	222
	(C)	1.270	0.02	0.9	444

Frequency depends on *AVref*

II)		Vref_av [V]	Δ Vref [V]	Out [V]	period [ns]
_	(a)	1.275	0.01	1.0	222
	(b)	1.270	0.00	0.9	91
	(c)	1.270	0.02	0.9	444
	(d)	1.265	0.01	0.9	148
		/ .	<u> </u>		

H/L ratio depends on Vref_av

L when VrefL<1.25, H when VrefH>1.29

Summary

- Autonomous and margin aware di/dt noise control scheme was demonstrated
- DC voltage in proportion to di/dt power is compared with reference voltages, and the operation mode is controlled based on the comparator output
- The measured oscillation waveforms prove that the autonomous di/dt control scheme works as being designed