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Abstract:
This paper demonstrates the first trial of an autonomous
and margin aware ����� noise control scheme. A �����
on the power line is detected by a mutual inductor, the in-
duced voltage is multiplied by Gilbert multiplier and the
following low pass filter outputs a DC voltage in propor-
tion to the ����� noise. The DC voltage is compared with
reference voltages, and the modes of the internal circuit is
controlled depending on the comparators output. By using
this scheme, the ����� noise power can be autonomously
controlled to fall within a defined range set by the refer-
ence voltages.
We use two operation modes here: all-active and half-
active modes. Our experimental results show that the in-
ternal circuit oscillates between the all-active and the half-
active modes, also show that the all/half ratio and the oscil-
lation frequency changes depending on the reference volt-
ages. It proves that our autonomous ����� noise control
scheme works as being designed.

1. Introduction

As the process technology advances, the number of tran-
sistors on an LSI chip has been increasing and their high
speed operations generate more power line noise while
the low supply voltage reduces the noise margin. Thus,
the power line noise becomes a serious issue for the reli-
ability of the LSI operations. The ground line noise also
presents on the substrate[1] because the ground line and
the substrate are tied with very low impedance, and hence
the power line noise becomes a serious concern for sub-
strate noise on analog-digital mixed signal LSIs as well.
The noise on a power line is caused by ����� noise and
resistive voltage drops due to the parasitic impedance of
the power line. As a chip operating frequency becomes
higher, the ����� noise becomes dominant. An EMI noise
is also caused by the �����.
It is difficult to predict the amount of the ����� noise by
a circuit simulation because it requires a huge database
of the parasitic impedance, the switching activity and the
switching timing, along with very long simulation time. In
addition, many recent LSIs have several operating modes.
Moreover, a process variation often makes the prediction
different from the actual ����� noise[2].
This paper proposes an autonomous and margin aware
����� noise control scheme. We have proposed an on-

chip ����� detector[3], and the ����� detector can be used
for the ����� noise control scheme here since the detec-
tor is realized on-chip and outputs the ����� value in real
time. The first trial, as the authors knowledge, of the au-
tonomous and margin aware ����� noise control scheme is
demonstrated here using 0.15�m 5-ML SOI-CMOS tech-
nology.

2. Circuit Design

2.1 Basic Concept

The block diagram of the autonomous ����� noise control
scheme is shown in Fig.1. The operation of the internal
circuit causes the ����� of the power line. The mutual
inductor induces the ����� proportional voltage between
the terminals of the secondary inductor, the induced volt-
age is squared and the ����� noise power waveform is ob-
tained. And the following low pass filter outputs the DC
voltage in proportion to the ����� noise power. Then the
comparators compare the DC voltage with reference volt-
ages ����� , and the operation mode controller controls
the mode of the internal circuit in accordance with the
comparator outputs. For example, the modes of the in-
ternal circuit include the variations of the clock frequency,
effective power supply voltage, threshold voltage, number
of the pipeline stage, number of parallel threading and so
on. These mode changes result in different ����� of the
internal circuit and hence the ����� noise of the internal
circuit can be controlled.
Another advantage of this method is that the allowed �����
level can be decided by the reference voltages of the com-
parators. Thus it is expected that a decided noise margin
is autonomously realized by setting the proper reference
voltages.
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Figure 1: Block diagram of the autonomous ����� noise
control scheme.
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2.2 Internal Circuit as Noise Source

Figure 2 shows our internal circuit as a noise generator.
The circuit contains VCO so that we can easily sweep
the clock frequency by changing the DC control voltage
(� ����). The frequency divider generates 101010	 	 	 sig-
nal for the input to the shift resister. The following di-
viders generates 
����, 
���� signals by which the
DFF outputs and some inverter chains are disconnected
when the divided clock outputs are “Low”, and hence the
current waveform becomes different in accordance with
the divided clock signals. ������� signal controls the
activation ratio of the circuit. The 
����� output is used
as a trigger for a oscilloscope, and the 
���� output is
used to check if the circuit works fine.
Note that the internal circuit has two modes: the all-active
and half-active modes.
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Figure 2: Internal circuit.

2.3 di/dt Detector

The ����� detector here is a mutual inductor which in-
duces the ����� proportional voltage between the termi-
nals. The mutual inductors here consists of a power supply
line and an underlying spiral inductor. The power supply
line �� is composed of the top metal layer ML5 with 1
turn, 20�m width. The spiral inductor �� has 20 turns
with 2�m width and 2�m spacing using ML3. The out-
side diameter of the both inductors are 150�m � 150�m,
as shown in Fig.3.
The resistors �� are used to keep the DC bias voltage as
half-Vdd for the following input. The resistor is formed
using gate-poly without silicide and the resistance is 10k�
which is big enough to be considered open for AC signal.

2.4 di/dt Multiplier and Low Pass Filter

A Gilbert multiplier[4] is used for obtaining the square
of the ����� signal, which converts the ����� proportional
voltage into the ����� noise power waveform. The follow-
ing low pass filter is composed of a resistor and a capaci-
tor. The schematic is shown in Fig.4.
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Figure 3: Mutual inductor structure.

The analog output current of the multiplier is proportional
to ����� � ����� � ����� � �����. Here, ��� and ��� in
Fig.4 are connected to �� in Fig.3, and ���, ���, �� are
connected so that the output signal is proportional to the
����� noise power.
The resistor of the low pass filter is formed using gate-
poly without silicide and the resistance is about 100k�,
the capacitor is formed using MIM capacitor and the ca-
pacitance is about 2.5pF.
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Figure 4: Gilbert multiplier and low pass filter.

2.5 Comparators and Operation Mode Con-
troller

The comparator compares the ����� noise power voltage
with the reference voltage, and outputs “H” if the �����
noise power voltage is higher than the reference voltage.
We use two comparators and the reference voltages are
����� and ����� .
The schematic of the operation mode controller is shown
in Fig.5. When the ����� noise power is lower than �����
(���=���=“L”), the operation mode controller outputs
“H(all)” to the ������� node so that all the internal
circuit is turned on. When the ����� noise power is higher
than the threshold ����� (���=���=“H”), the operation
mode controller outputs “L(half)” to the ������� node
so that the half of the internal circuit is turned off and the
����� is reduced. When the ����� noise power is between
����� and �����, the operation mode controller outputs
the signal so as to keep the previous operation mode.
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Figure 5: Schematic of the operation mode controller.
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Figure 6: Operation of the hysteresis comparator.

Thus, the comparators and the operation mode controller
consist of a hysteresis comparator, as shown in Fig.6.

3. Measurement

3.1 Setups

The chip is designed and fabricated using 0.15�m 5-
ML SOI-CMOS technology, and the chip area is about
3.2mm�1.8mm, as shown in Fig.7.
The chip is mounted on a Cu board as shown in Fig.8.
All the inputs are DC and supplied through lead lines to
the “islands” on the board. The voltage of the islands are
stabilized by several chip capacitors. 50� transmission
lines are directly connected to the high-speed output pins
including 
����, 
�����. The ������� signal is
probed by a high impedance (1M�) probe.

3.2 Frequency Dependence of di/dt Noise Power

When the same reference voltage is applied to ����� and
�����, and sweeping the voltage, the ������� signal
changes when the reference voltage crosses the low pass
filter output voltage which reflects the ����� noise power.
(Actually ������� oscillates at a range of the reference
voltage, which will be described in the next section, the
center voltage is used here as the low pass filter output
voltage, and hence the ����� noise power.)
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Figure 7: Chip photograph.

Figure 8: Measurement Setup.
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Figure 9: Clock frequency dependence of the di/dt noise
power.

The clock frequency dependence of the ����� noise power
under 1.5V power supply is shown in Fig.9. It shows that
the ����� noise power has a peak at around 2.0GHz, which
reflects the package and the bonding wire characteristics.

4. Discussions

4.1 Waveforms of Oscillation

As being described, the internal circuit has two modes: the
all-active and half-active modes. If the ����� noise power
of the all-active is higher than ����� and the ����� noise
power of the half-active is lower than �����, the internal
circuit oscillates between the two modes. The H/L ratio
depends on the average of the reference voltages �������
��������, and the higher reference voltages lead higher H
ratio. The oscillation frequency depends on the reference
voltage difference ����� � ����� (and the low pass filter
time constant), and the bigger reference voltage difference
leads longer oscillation period.
The oscillation waveforms of ������� signal between
the all-active(H) and the half-active(L) modes are shown
in Fig.10. The clock frequency is set to 2.0GHz in this
measurement where the maximum ����� is obtained as
shown in Fig.9.
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Figure 10: Measured waveforms of ������� signal at
2.0GHz clock frequency. The applied reference voltages,
the measured results are summarized in Table 1.

���� avrg.[V] 	���� [V] Out[V] period[ns]

(a) 1.275 0.01 1.0 222
(b) 1.270 0.00 0.9 91
(c) 1.270 0.02 0.9 444
(d) 1.265 0.01 0.9 148

1.250 1.28 L –
1.260 1.29 H –

Table 1: Reference voltage dependence of the oscillation
period when the clock frequency is 2.0GHz.

The applied reference voltages, the measured H/L ratio
and the oscillation period of (a), (b), (c) and (d) cases of
Fig.10 are summarized in Table 1. Since the output driver
of the ������� signal is so small that the average out-
put voltage of the waveforms is used here as the indication
of the H/L ratio.
For the H/L ratio, though the difference of case (b) and
(c) is not clear because the 	���� is not the same, the
difference between (a) and (d) is clear and reasonable. For
the oscillation period, it is clear that the oscillation period
becomes longer as 	���� becomes larger.

No oscillation occurs and stays “L” when ����� � �	�
V
and stays “H” when ����� � �	��V because the all-active
has the ����� noise power of 1.29-Æ[V] and half-active has
the ����� noise power of 1.25+Æ[V] where � � Æ � �	��V.

5. Conclusions

An autonomous and margin aware ����� noise control
scheme has been demonstrated. A ����� on the power
line is detected by a mutual inductor, the induced volt-
age is squared by the Gilbert multiplier and the follow-
ing low pass filter outputs the DC voltage in proportion to
the ����� noise power. The DC voltage is compared with
reference voltages, and the mode of the internal circuit is
controlled depending on the comparators output.
Though we used only two operation modes in this study. it
can be easily extended to multiple operation modes. Our
experimental results show that the mode of the internal
circuit oscillates among the different operation modes so
that the average ����� noise power falls within a region
determined by the reference voltages. It proves that our
autonomous ����� noise control scheme works as being
designed.
This is the first demonstration, as the authors knowledge,
of an autonomous and margin aware ����� noise control
scheme.
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